小学四年级奥数巧妙求和练习题

时间:2021-01-19 12:52:18 奥数题 我要投稿

小学四年级奥数巧妙求和练习题

  若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

  从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的`差称为公差。

  在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

  通项公式:第n项=首项+(项数-1)×公差

  项数公式:项数=(末项-首项)÷公差+1

  【例题1】 有一个数列:4,10,16,22.…,52.这个数列共有多少项?

  【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

  项数=(52-4)÷6+1=9,即这个数列共有9项。

  练习1:

  1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?

  2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?

  3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?

  【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?

  【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

  第100项=3+4×(100-1)=399.

  练习2:

  1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?

  2.求1.4,7,10……这个等差数列的第30项。

  3.求等差数列2.6,10,14……的第100项。

  【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。

  【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+ (3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2 倍,再除以2.就是所求数列的和。

  1+2+3+…+99+100=(1+100)×100÷2=5050

  上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:

  等差数列总和=(首项+末项)×项数÷2

  这个公式也叫做等差数列求和公式。

  练习3:

  计算下面各题。

  (1)1+2+3+…+49+50

  (2)6+7+8+…+74+75

  (3)100+99+98+…+61+60

  【例题4】求等差数列2,4,6,…,48,50的和。

  【思路导航】这个数列是等差数列,我们可以用公式计算。

  要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25

  首项=2.末项=50,项数=25

  等差数列的和=(2+50)×25÷2=650.

  练习4:

  计算下面各题。

  (1)2+6+10+14+18+22

  (2)5+10+15+20+…+195+200

  (3)9+18+27+36+…+261+270

  【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)

  【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

  进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。

  (2+4+6+…+100)-(1+3+5+…+99)

  =(2-1)+(4-3)+(6-5)+…+(100-99)

  =1+1+1+…+1

  =50

  练习5:

  用简便方法计算下面各题。

  (1)(2001+1999+1997+1995)-(2000+1998+1996+1994)

  (2)(2+4+6+…+2000)-(1+3+5+…+1999)

  (3)(1+3+5+…+1999)-(2+4+6+…+1998)

【小学四年级奥数巧妙求和练习题】相关文章:

小学奥数题巧妙求和技巧03-25

小学四年级奥数巧妙求和试题练习10-15

小学三年级奥数配对求和练习题09-28

小学奥数行程问题练习题10-10

小学奥数题练习题及答案03-04

小学四年级的奥数练习题01-25

小学奥数练习题关于相遇问题01-28

小学奥数题透析及练习题介绍03-04

小学奥数快速口算技巧练习题01-28