高等数学:矩阵运算的物理含义

时间:2022-11-04 00:52:47 大学数学 我要投稿
  • 相关推荐

高等数学:矩阵运算的物理含义

  高等数学矩阵运算的物理含义讲什么呢?下面小编为大家介绍高等数学:矩阵运算的物理含义,希望能帮到大家!

高等数学:矩阵运算的物理含义

  如果把矩阵看成一个2维坐标系离散值的几何,那么:

  1.矩阵加法A+B就是A的各个点作平移,平移的度量是B当中对应的点。

  2.矩阵乘法A*B就是一种线性映射:如果A是x/y坐标系,B是y/z坐标系,那么结果就是x->z的映射。举个例子,有3个国家,A国有三个城市,B国有三个城市,C国有两个城市。他们之间的道路状况如下用矩阵表示


  那么从A国的每个城市出发经过B到达C的每个城市,各自有多少条线路?答案就是

  A*B=[(2,1),(1,1),(2,1)]

  3.我们深入的讨论一下"映射"的概念。举实数为例,y=ax是一个乘法映射,每一个x对应一个y。那么如果知道y求x呢?x=a^(-1)*y。这里影射函数f(x)=ax和反函数g(x)=a^(-1)x互逆。那么我们推广到N维坐标系空间里面就看到,矩阵就是一个N*N的坐标系映射。AX=B,把B看成Y,那么X=A^(-1)*Y。前提是A的范数!=0。我们构造的得到的A的1范数就是它的行列式。那么到底什么是映射?莱布尼茨说映射就是一组2元关系。在1维的时候表现为函数的形式f(z)=z,在多维的时候表现为矩阵的形式。1维的多次映射表现为函数的嵌套(gof),多维的情形可以写成矩阵的乘法。当然,限制条件是,矩阵能表示的是一个离散值的集合。当然,方阵才有逆----方阵是维数不变的N->N的一一映射,所以可能有且只有一个反映射,或者没有反映射。N->M的不同维数映射无法得到反映射。

  4.形式化的定义。我们如果把矩阵看成一个"算子"的话,矩阵的乘法就能看成一个状态机的推演,推算的过程就是一次算子入栈,反推的过程就是算子出栈。那么显然就能够理解(AB)T=B(T)*A(T)以及(AB)^-1=B^(-1)*A^(-1),(AB)*=(B*)*(A*)。我们从伴随矩阵的性质AA*=|A|E得到A^(-1)=A*/|A|。矩阵左乘是行变换,右乘是列变换。把矩阵看成算子,同时可以把子矩阵看成算子,分块矩阵的相成和行列式求解也就很简单了。可以把小的矩阵当成一个数来看待。三角阵通过初等变换可以变成分块阵。

  5.初等矩阵有3种,对应3种最基本的矩阵变换,也就是行列互换,行列数乘,一行/列数乘以后加到另一个行/列上面。初等矩阵都可逆。线性变换的结果是"相抵"的。一个矩阵总是能等于一个初等变换矩阵,并且逆矩阵的属性不变。对于可逆矩阵A,总有P1P2P3...PnAQ1Q2...Qn=E。或者说存在可逆矩阵P/Q使得PAQ=E。例如,如果A,B和A+B都可逆,那么A(-1)+B(-1)=B(-1)(B+A)A(-1)也是可逆的。


  6.于是有了线性空间的概念:线性空间V就是一个集合,它同时满足V上的元素加法和对于数域K上面的乘法满足8条线性运算的规则。

  7.为什么要讨论相似?这里面包含了一种不变性,是研究变换的数学工具。实数变换可以拆分成复数变换,例如酉矩阵,在晶体学里,酉变换叫做幺正变换,也就是将空间(可以是任意维的)中一组基矢做一个旋转操作,不改变矢量的大小和内积。而在量子力学里面,这个用处就更大了,本质上就是量子力学所说的表象变换。是连接两个表象的桥梁。

  矩阵代表了一种二元关系。函数映射是一种1维的二元关系,那么矩阵就是一种N维的二元关系。矩阵的方法就是一种映射的运算,之所以成为线形运算,是因为每一个投影都是具有拉伸和整体旋转的几何意义,相当于向量通过平面镜映射到一个投影平面上面的结果。这里只有平面镜和投影平面,没有哈哈镜和投影曲面。如果我们把2元的对应关系写成复数形式z=x+yi,那么f(z)就是一种投影的关系,只不过f(z)是直线方程的时候对应于一个等效的矩阵,f(z)如果不是直线方程,那么就是一种非线性变换。线形变换有许多很好的性质,能够保持信息的数量和结构保持某种程度的不变性,同时使得结果方便理解和处理。

  映射还有一个性质,就是保角性。假设我们要研究x/y平面上面的x^2-y^2=c和xy=d这两个双曲线之间的夹角,怎么办?我们可以用微元的办法(微分几何)来求出。但是这样当然很麻烦,而且是一题一解(牛顿喜欢这样做,但是莱布尼茨反对这种解决方案),不太符合公理系统和形式化推理的思想。考虑z1=x+yi,z2=y-xi,f(z)=z^2费波纳契数列的求解遇到过这样的问题:

  一个数列a(-1)=1,a(0)=1,a(n+2)=a(n+1)+a(n)求an的通项公式。用中学时代的眼光我们可以观察到,如果an当n->无穷的时候,是个等比数列,显然符合递推公式。那么我们就可以假设an=入a(n-1),那么由递推公式我们就可以得到:入^2*a(n-1)=入*a(n-1)+a(n-1),求得入=(1+根号5)/2(应为这个比值要>1),那么an=入^n*a0。当然这个只是一个近似公式,结果不准确而且推导的过程不严格。那么我们用大学的线形代数来求解。我们考虑修正方案构造一个等比数列,an+Aa(n-1)=B(a(n-1)+A(a(n-2),化简得到an=(B-A)a(n-1)+Aa(n-2),于是B-A=1,AB=1,解得A/B=(根号5+-1)/2。

【高等数学:矩阵运算的物理含义】相关文章:

PPT的含义07-24

快乐的含义作文08-06

幸福的含义作文02-28

生命的含义作文03-21

数学混合运算教案08-31

描写秋天的成语及含义09-19

大学高等数学复习要点总结04-27

大学如何学好高等数学03-23

高等数学中几种求极限的方法03-08