六年级奥数专题讲解:最优化问题

时间:2021-01-21 17:02:18 奥数题 我要投稿

六年级奥数专题讲解:最优化问题

  最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。

  [专题介绍]

  最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。

  最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。

  [经典例题]

  例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?

  [分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。

  因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。

  例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?

  [分析] 一个10尺长的.竹竿应有三种截法:

  (1) 3尺两根和4尺一根,最省;

  (2) 3尺三根,余一尺;

  (3) 4尺两根,余2尺。

  为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

  例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?

  [分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。

  例4: 把25拆成若干个正整数的和,使它们的积最大。

  [分析] 先从较小数形开始实验,发现其规律:

  把6拆成3+3,其积为3×3=9最大;

  把7拆成3+2+2,其积为3×2×2=12最大;

  把8拆成3+3+2,其积为3×3×2=18最大;

  把9拆成3+3+3,其积为3×3×3=27最大;……

  这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。

【六年级奥数专题讲解:最优化问题】相关文章:

六年级奥数专题讲解:时钟问题11-03

六年级奥数专题讲解:称球问题11-19

六年级奥数专题讲解:数的整除11-13

六年级奥数专题讲解:找规律填数11-10

六年级奥数专题讲解:列车过桥11-07

六年级奥数专题讲解:加法原理11-12

奥数专题之盈亏问题25题03-17

六年级奥数专题讲解:利率与利息11-04

六年级奥数专题讲解:利润与折扣11-07