高考数学知识点之二次函数

时间:2022-10-05 00:49:09 高中数学 我要投稿
  • 相关推荐

高考数学知识点之二次函数

  二次函数的基本表示形式为y=ax+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条 对称轴与y轴平行或重合于y轴的 抛物线。下面小编给大家介绍高考数学知识点:二次函数,赶紧来看看吧!

高考数学知识点之二次函数

  高考数学知识点之二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的`顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。


【高考数学知识点之二次函数】相关文章:

高中数学一次函数知识点10-13

高中数学函数知识点04-26

高中数学一次函数知识点小结10-13

高中常考的数学知识点:对数函数与幂函数11-10

高考数学函数选择题的做法11-26

高中数学知识点:函数10-25

高中数学函数知识点归纳07-25

高考数学一次函数应用题的做题技巧11-26

高中数学知识点幂函数10-21

高中数学:函数的基本知识点09-06