高一数学集合知识点
在高中数学中集合是一个基础的概念,它是指具有某种特定性质的事物的总体,当然,这里的“事物”可以指人也可以指物品,也可以是数学元素,集合的概念可以通过直观、公理的方法来进行“定义”。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:集合中的任意两个元素都是不同的
(3) 元素的无序性: 集合中的元素之间是没有顺序的。如:{a,b,c} 和{a,c,b}是表示同一个集合
3.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:将集合中的元素一一列举出来{a,b,c……}
2) 描述法:将集合中的元素的'公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
属于:;包含于:;
属于与包含于的区别:
属于是元素与集合之间的关系,例如:元素a属于集合A{a,b}
包含于是集合与集合之间的关系。例如:集合A{a}包含于集合B {a,c}
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
【高一数学集合知识点】相关文章:
高一数学《集合》知识点07-20
高一数学集合知识点总结11-25
高一数学必修一知识点:集合11-03
高一数学重点知识点:集合10-27
高一数学上册知识点整理:集合10-13
高一数学集合与集合的表示方法知识点11-29
高一数学知识点11-29
高一数学必修1知识点:集合有关概念01-30
高一数学函数知识点归纳11-11