- 相关推荐
高一必修一《对数函数》知识点
在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点就是掌握某个问题/知识的学习要点。为了帮助大家更高效的学习,以下是小编整理的高一必修一《对数函数》知识点,欢迎阅读,希望大家能够喜欢。
1.对数
(1)对数的定义:
如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.
(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.
(3)对数运算性质:
①loga(MN)=logaM+logaN.
②loga(M/N)=logaM-logaN.
③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)
④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).
2.对数函数
(1)对数函数的定义
函数y=logax(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1
对数函数的底数为什么要大于0且不为1呢?
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16
(2)对数函数的性质:
①定义域:(0,+∞).
②值域:R.
③过点(1,0),即当x=1时,y=0.
④当a>1时,在(0,+∞)上是增函数;当0
应用对数型函数的图像可求解的问题
(1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.
(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.
比较对数式的大小的关系:
①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需要对底数进行分类讨论;
②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较;
③若底数与真数都不同,则常借助1,0等中间量进行比较.
函数性质
定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;
0 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。解释如下: 也就是说:若y=logab (其中a>0,a≠1,b>0) 当00; 当a>1, b>1时,y=logab>0; 当a>1, 0 表达方式 1)常用对数:lg(b)=log10b(10为底数)。 (2)自然对数:ln(b)=logeb(e为底数)。 e为无限不循环小数,通常情况下只取e=2.71828。 与指数的关系 同底的对数函数与指数函数互为反函数。 当a>0且a≠1时,ax=N=>x=㏒aN。 关于y=x对称。 对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0 【高一必修一《对数函数》知识点】相关文章: 高一必修一数学知识点大全10-04 高一数学必修二知识点整理02-28 高中数学必修一必修知识点总结10-13 高一语文必修一教案07-15 2017高考数学知识点「必修一至必修五」11-26 高一必修英语作文(精选22篇)06-10 高考数学必考知识点:对数及对数函数10-03 高一英语必修一必背句型总汇大全10-05 高中常考的数学知识点:对数函数与幂函数11-10