中考数学关于有理数乘除法的知识点

时间:2022-07-27 14:43:29 初中数学 我要投稿
  • 相关推荐

中考数学关于有理数乘除法的知识点

  有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。下面是小编分享的中考数学关于有理数乘除法的知识点,欢迎阅读!

中考数学关于有理数乘除法的知识点

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数.

  有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

  【有理数

  一、正数和负数

  正数和负数的概念

  负数:比0小的数;正数:比0大的数。

  0既不是正数,也不是负数

  ☆注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。

  具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.

  二、有理数

  有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)整数和分数统称有理数

  ☆注意:

  ①π是无限不循环小数,不能写成分数形式,不是有理数。

  ②有限小数和无限循环小数都可化成分数,都是有理数。

  数轴

  (1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。

  注意:数轴是一条向两端无限延伸的直线;

  原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  数轴的三要素都是根据实际需要规定的,同一数轴上的单位长度要统一;

  (2)数轴上的点与有理数的关系

  所有的有理数都可以用数轴上唯一的点来表示,正有理数可用原点正方向的点表示,负有理数可用原点负方向的点表示,0用原点表示。

  相反数

  (1)只有符号不同的两个数叫做互为相反数;0的相反数是0;任何一个有理数都有相反数

  (2)互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0;互为相反数的两个点在数轴上分别位于原点两侧,并且与原点的距离相等。

  (3)在一个数的前面加上负号“-”,就得到了这个数的相反数。a的相反数是-a。

  (4)多重符号的化简

  多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

  绝对值

  (1)绝对值的几何定义:数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|

  (2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:

  ①如果a>0,那么|a|=a;

  ②如果a<0,那么|a|=-a;

  ③如果a=0,那么|a|=0。

  可归纳为

  ①:a≥0时,|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

  ②a≤0时,|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

  (3)若几个数的绝对值的和等于0,则这几个数就同时为0。

  即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  有理数比大小

  (1)利用数轴表示两数大小

  在以向右为正方向的数轴上数的大小比较,右边的数总比左边的数大;

  正数都大于0,负数都小于0,正数大于负数;

  (2)数轴上特殊的最大(小)数

  最小的自然数是0,无最大的自然数;

  最小的正整数是1,无最大的正整数;

  最大的负整数是-1,无最小的负整数

  (3)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;

  (4)大数-小数>0,小数-大数<0。

  三、有理数的加、减法运算

  有理数加法

  (1)同号两数相加,取相同符号,并且把绝对值相加

  (2)异号两数相加,取绝对值大的数的符号,并且用较大的绝对值减去较小的绝对值

  (3)互为相反数的两数相加得0

  ☆

  加法交换律:两个有理数相加,交换加数的位置,和不变,a+b=b+a

  加法结合律:三个有理数相加,先把前两个数相加,再把结果与第三个数相加;或者先把后两个数相加,再把结果与第一个数相加,和不变,(a+b)+c=a+(b+c)

  ☆

  (1)同号结合相加(正数+正数、负数+负数)

  (2)互为相反数的两数结合相加(把相加结果为零的数结合相加)

  (3)几个分数相加,将同分母的先结合相加

  (4)将求和后为整数的数先结合相加

  (5)几个带分数相加,可将整数部分与分数部分分别结合相加

  ☆在一个求和的式子中,通常可以把“+”省略不写,同时去掉加数的括号

  有理数的减法

  根据相反数的定义,减去一个数,等于加上这个数的相反数,有理数的减法可以转化为加法进行计算。引入相反数的之后,有理数的加减混合运算可以统一为加法运算。

  四、有理数的乘、除法运算

  有理数乘法

  (1)异号两数相乘得负数,并把绝对值相乘;同号两数相乘得正数,并把绝对值相乘。

  (2)任何数与0相乘都得0

  ☆有理数的乘法运算定律

  乘法交换律:两个有理数相乘,交换因数的位置,它们的积不变。a×b=b×a

  乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。a×b×c=a×(b×c)

  乘法分配律:两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。a×(b+c)=a×b+a×c

  倒数

  (1)乘积为1的两个数互为倒数;注意:0没有倒数;

  (2)若a,b互为倒数,则ab=1;

  (3)求倒数:求一个数的倒数就是用1去除以这个数。

  ①求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;

  ②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

  ④倒数等于它本身的数是1或-1;

  有理数除法

  (1)除以一个不等0的数,等于乘以这个数的倒数。

  (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  有理数的加减乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行,同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  五、有理数乘方

  乘方的概念:求n个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。乘方中,相同的因式叫做底数,相同因式的个数叫做指数。

  记作:an,在an中,a叫做底数,n叫做指数,an叫做幂

  乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数。

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  (3)互为相反数的两个数的奇数次幂仍互为相反数,偶数次幂相等。

  (4)任何一个数的偶数次幂都是非负数。

  有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2)同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  (3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  科学记数法

  把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤|a|<10,n是正整数),这种记数法叫科学记数法。

  方法:

  ①a的确定:把原数的小数点向左移动,使它的整数位数为1,数的正负号保持不变;

  ②n=原数的整数数位-1。

  【相关知识点】

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0a+b=0a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:

  减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  10.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  12.有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15.科学记数法:

  把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:

  一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  17.有效数字:

  从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:

  先乘方,后乘除,最后加减.

  本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

  体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

【中考数学关于有理数乘除法的知识点】相关文章:

初中数学《有理数的除法》教案(精选6篇)09-27

有理数及其运算初一数学知识点集锦07-19

中考数学知识点:实数的性质08-01

初一数学知识点:有理数的四则运算10-17

中考数学常考的知识点:平行定理02-06

中考常考的数学知识点大全06-09

中考数学常考的知识点:因式分解06-07

小学二年级数学表内除法知识点12-03

数学有余数的除法教案04-01