八年级上册数学知识点

时间:2023-05-24 10:51:31 宗泽 初中数学 我要投稿
  • 相关推荐

人教版八年级上册数学知识点

  漫长的学习生涯中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。还在苦恼没有知识点总结吗?下面是小编收集整理的人教版八年级上册数学知识点,欢迎阅读与收藏。

人教版八年级上册数学知识点

  八年级上册数学知识点

  一、全等形

  1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

  2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合

  二、全等多边形

  1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、性质:

  (1)全等多边形的对应边相等,对应角相等。

  (2)全等多边形的面积相等。

  三、全等三角形

  1、全等符号:"≌"。如图,不是为:△ABC≌△A′B′C′。读作:三角形ABC全等于三角形A′B′C′。

  2、全等三角形的判定定理:

  (1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,"边角边");

  (2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,"角边角")

  (3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,"角角边")

  (4)有三边对应相等的两三角形全等。(即SSS,"边边边")

  (5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,"斜边直角边")

  3、全等三角形的性质:

  (1)全等三角形的对应边相等、对应角相等;

  (2)全等三角形的周长相等、面积相等;

  (3)全等三角形对应边上的中线、高,对应角的平分线都相等。

  4、全等三角形的作用:

  (1)用于直接证明线段相等,角相等。

  (2)用于证明直线的平行关系、垂直关系等。

  (3)用于测量人不能的到达的路程的长短等。

  (4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

  (5)用于解决有关等积等问题。

  八年级上册数学知识点

  1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

  通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。

  (2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

  3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

  在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。

  八年级上册数学知识点

  一、平面直角坐标系:

  在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

  二、知识点与题型总结:

  1、由点找坐标:

  A点的坐标记作A( 2,1 ),规定:横坐标在前,纵坐标在后。

  2、由坐标找点:例找点B( 3,-2 ) ?

  由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

  各象限点坐标的符号:

  ①若点P(x,y)在第一象限,则x > 0,y > 0 ;

  ②若点P(x,y)在第二象限,则x < 0,y > 0 ;

  ③若点P(x,y)在第三象限,则x < 0,y < 0 ;

  ④若点P(x,y)在第四象限,则x > 0,y < 0 。

  典型例题:

  例1、点P的坐标是(2,-3),则点P在第四象限。

  例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。

  例3、若点A的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

  4、坐标轴上点的坐标符号:

  坐标轴上的点不属于任何象限。

  ① x轴上的点的纵坐标为0,表示为(x,0),

  ② y轴上的点的横坐标为0,表示为(0,y),

  ③原点(0,0)既在x轴上,又在y轴上。

  例4、点P(x,y )满足xy = 0,则点P在x轴上或y轴上。 .

  5、与坐标轴平行的两点连线:

  ①若AB‖ x轴,则A、B的纵坐标相同;

  ②若AB‖ y轴,则A、B的横坐标相同。

  例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A )

  A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直

  6、象限角平分线上的点:

  ①若点P在第一、三象限角的平分线上,则P( m, m );

  ②若点P在第二、四象限角的平分线上,则P( m, -m )。

  例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。

  解:由条件可知:2a+1 +(2+a)=0,解得a = -1,

  ∴ A(-1,1)。

  例7、已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。

  解:当在一、三象限角平分线上时,a+1=3a-5,

  解得:a=3 ∴ M(4,4)

  当在二、四象限角平分线上时,a+1+(3a-5 )=0,

  解得:a=1 ∴ M(2,-2)

  ∴M的坐标为(4,4)或(2,-2)

  7、关于坐标轴、原点的对称点:

  ①点(a, b )关于X轴的对称点是(a , -b );

  ②点(a, b )关于Y轴的对称点是( -a , b );

  ③点(a, b )关于原点的对称点是( -a , -b )。

  例8、已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。

  解:由条件得:3a-1=1+a解得:a=1,∴ A(2,2),

  ∴ A关于原点的对称点的坐标为(-2,-2)。

  8、点到坐标轴的距离:

  ①点( x, y )到x轴的距离是∣y∣;

  ②点( x, y )到x轴的距离是∣x∣。

  例9、点P到x轴、y轴的距离分别是2,1,则点P的坐标可能为?

  答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

  三、知识拓展与提高:

  例10、在平面直角坐标系中,已知两点A(0,1),B(8,5),点P在x轴上,则PA + PB的最小值是多少?

  解:作点A(0,1)关于x轴的对称点A(0,-1),连接AB与x轴交于点P,

  则AB路径最短,即PA + PB最小。

  根据勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。

  ∴PA + PB的最小值是10 。

  如何学好初中数学的方法

  多做练习题

  要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

  课后总结和反思

  在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

  初中数学有理数知识点

  1、有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。

  “大”减“小”是指绝对值的大小。

  2、有理数的减法运算

  减正等于加负,减负等于加正。

  有理数的乘法运算符号法则。

  同号得正异号负,一项为零积是零。

  3、有理数混合运算的四种运算技巧

  转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

  凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

  分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

  巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

  八年级上册数学知识点

  中线

  1、等腰三角形底边上的中线垂直底边,平分顶角;

  2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

  1、两边上中线相等的三角形是等腰三角形;

  2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

  角平分线

  1、等腰三角形顶角平分线垂直平分底边;

  2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

  1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

  2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

  高线

  1、等腰三角形底边上的高平分顶角、平分底边;

  2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

  1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

  2、有两条高相等的三角形是等腰三角形。

  八年级上册数学知识点

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  第七章知识点

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4、二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  第八章知识点

  1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

  2、平均数

  (2)加权平均数:

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  全等三角形知识点

  1、全等图形:能够完全重合的两个图形就是全等图形。

  2、全等图形的性质:全等多边形的对应边、对应角分别相等。

  3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

  说明:

  全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

  这里要注意:

  (1)周长相等的两个三角形,不一定全等;

  (2)面积相等的两个三角形,也不一定全等。

  小练习

  1、下列说法中正确的说法为()

  ①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,

  A、①②③④B、①③④C、①②④D、②③④

  2、一个正方形的侧面展开图有()个全等的正方形

  A、2个B、3个C、4个D、6个

  3、对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

  ①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等、

  A、1个B、2个C、3个D、4个

  三角形全等的判定知识点

  1、三角形全等的判定公理及推论有:

  (1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

  (2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

  (3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。

  (4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

  2、直角三角形全等的判定

  利用一般三角形全等的判定都能证明直角三角形全等、

  斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)、

  注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

  小练习

  1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______

  核心考点:全等三角形的判定

  2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______

  核心考点:三角形的稳定性

  3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______

  核心考点:全等三角形的判定

  角的平分线的性质知识点

  1、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  2、判定定理:到角的两边距离相等的点在该角的角平分线上。

  3、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

  ①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),

  ②、回顾三角形判定,搞清我们还需要什么,

  ③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)

  八年级上册数学知识点

  1、实数的概念及分类

  ①实数的分类

  ②无理数

  无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  开方开不尽的数,如 √7 ,3 √2等;

  有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

  有特定结构的数,如0.1010010001…等;

  某些三角函数值,如sin60°等

  2、实数的倒数、相反数和绝对值

  ①相反数

  实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  ②绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  ③倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

  ④数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ⑤估算

  3、平方根、算数平方根和立方根

  ①算术平方根

  一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

  ②平方根

  一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。

  表示方法:记作 3 √a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

  4、实数大小的比较

  ①实数比较大小

  正数大于零,负数小于零,正数大于一切负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  ②实数大小比较的几种常用方法

  数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比较法:设a、b是两正实数,

  绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

  平方法:设a、b是两负实数,则 a2>b2a<b 。

  5、算术平方根有关计算(二次根式)

  ①含有二次根号“ √ ”;被开方数a必须是非负数。

  ②性质:

  ③运算结果若含有“ √ ”形式,必须满足:

  被开方数的因数是整数,因式是整式

  被开方数中不含能开得尽方的因数或因式

  6、实数的运算

  ①六种运算:加、减、乘、除、乘方 、开方。

  ②实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  ③运算律

  加法交换律 a+b= b+a

  加法结合律 (a+b)+c= a+( b+c )

  乘法交换律 ab= ba

  乘法结合律 (ab)c = a( bc )

  乘法对加法的分配律 a( b+c )=ab+ac

【八年级上册数学知识点】相关文章:

八年级上册英语知识点04-30

八年级英语上册《Whatareyoudoingforvacation》知识点04-04

八年级英语上册知识点归纳04-07

八年级上册英语知识点整理05-01

八年级上册英语知识点总结05-02

八年级上册英语知识点归纳03-14

八年级上册英语知识点复习04-26

八年级上册英语期中知识点05-01

八年级英语上册《Howdoyoumakeabananamilkshake》知识点总结04-02

人教版八年级上册英语复习知识点05-02