小学数学概念知识点整理

时间:2021-01-30 13:31:33 小学数学 我要投稿

小学数学概念知识点整理

  数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。以下是小编整理的小学数学概念知识点整理,欢迎参考阅读!

小学数学概念知识点整理

  1整数部分:

  十进制计数法;一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法

  整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”.

  整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.

  四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

  整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.

  2小数部分:

  把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示.如1/10记作0.1,7/100记作0.07.

  小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数

  小数的读法:整数部分整数读,小数点读点,小数部分顺序读.

  小数的写法:小数点写在个位右下角.

  小数的性质:小数末尾添0去0大小不变.化简

  小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍.

  小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.

  3分数和百分数

  ■分数和百分数的意义

  1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.

  2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.

  3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.

  4、 成数:几成就是十分之几.

  ■分数的种类

  按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

  ■分数和除法的关系及分数的基本性质

  1、 除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.

  2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.

  3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.

  ■约分和通分

  1、 分子、分母是互质数的分数,叫做最简分数.

  2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.

  3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.

  4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.

  5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.

  ■倒 数

  1、 乘积是1的两个数互为倒数.

  2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  3、 1的倒数是1,0没有倒数

  ■分数的大小比较

  1、 分母相同的分数,分子大的那个分数就大.

  2、 分子相同的分数,分母小的那个分数就大.

  3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.

  4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.

  ■百分数与折数、成数的互化:

  例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%.

  ■纳税和利息:

  税率:应纳税额与各种收入的比率.

  利率:利息与本金的百分率.由银行规定按年或按月计算.

  利息的计算公式:利息=本金×利率×时间

  百分数与分数的区别主要有以下三点:

  1.意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等.

  2.应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.

  3.书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.

  4数的整除

  ■整除的意义

  整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

  除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0).

  ■约数和倍数

  1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数.2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数.

  ■奇数和偶数

  1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数.例如:1、3、5、7、9……

  ■整除的.特征

  1、能被2整除的数的特征:个位上是0、2、4、6、8.

  2、能被5整除的数的特征:个位上是0或5.

  3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除.

  ■质数和合数

  1、一个数只有1和它本身两个约数,这个数叫做质数(素数).

  2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.

  3、1既不是质数,也不是合数.

  4、自然数按约数的个数可分为:质数、合数

  5、自然数按能否被2整除分为:奇数、偶数

  ■分解质因数

  1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数.

  2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数.

  3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数.

  4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数.(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积.

  ■奇数和偶数的运算性质:

  1、相邻两个自然数之和是奇数,之积是偶数.

  2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

  奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数.

  整数、小学、分数四则混合运算

  ■四则运算的法则

  1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加

  2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减

  3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母.能约分的先约分,结果要化简

  4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上.除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数

  ■运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.

  ■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.

【小学数学概念知识点整理】相关文章:

小学数学常考知识点整理02-03

高中数学知识点整理03-07

高频小学奥数知识点整理11-30

高等数学知识点之集合的概念10-03

数学网整理高中数学知识点总结03-03

高一数学上册知识点整理:集合10-13

大学数学函数与极限的学习知识点整理03-05

2018考研数学方程组求解知识点整理07-19

高一数学必修1知识点:集合有关概念12-15

双曲线方程高中数学知识点整理03-07