数学学习技巧与方法有哪些

时间:2021-01-30 17:37:28 学习方法 我要投稿

数学学习技巧与方法有哪些

  数学学习技巧与方法有哪些?数学的难处在于有没有找到着正确的学习方法,只要找到适合自己的学习方法,数学也可以变得很简单。以下是小编分享给大家的数学的学习方法的资料,希望可以帮到你!

数学学习技巧与方法有哪些

  数学的学习方法

  一、抓住重点听讲。上课前我是一定要预习的,有时间就看的仔细些,老师要讲什么内容,有什么定义、定理和公式我先都记住,再看一些例题去理解定义和定理的应用,脑子里会形成那些我明白了,那些不理解,记在本子上。上课的时候,老师嘴一张开我就知道老师要讲什么了,会的我就看自己的书,不会的我就仔细听讲。我善于抓住重点去听讲,记的时候,我看其他同学是什么都记,我不是,凡是书上有的内容我从不记,比如定义、定理和公式和书上的例题。我只记一些书上没有的内容,我不会的内容,还有老师说这是重点或难点的内容。我经常在书上做一些纪录,我的书看完是满书涂鸦,不适合别人看了,以后自己一翻书,我就会从我的纪录上回忆这一节的全部内容,一翻书就回忆,经常翻就记的很牢了。

  二、多看辅导书。老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。

  三、定期整理归纳。每学完一章的内容,我都要进行小结。把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。

  很早以前的数学学习方法,有些也记不住了,上面说的是我常用的方法也忘记不了。我说的很简单,最重要的最核心的内容就是要善于多思考。

  有些学生数学学不好究其原因有以下情况:

  一、注重结论,轻视过程。数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。应该学会不断调控自己的思维过程,力争使解题尽善尽美。只练不想、不思、不总结,未必有好结果。只会埋头做题,不会抬头思考,虽然做了大量的题目,以往所学的知识也难以保持随机提取的状态,只有靠滚动式的总结,才能记住和掌握使知识,并且实现阶段性知识层次的飞跃。

  二、缺乏对已学习过的典型题目及典型方法的积累。做了大量的习题,但收效甚微,效果不佳。作业是迫于压力为完成任务而被动做题,缺乏必要的总结和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累—消化—吸收”才能“升华”。

  三、忽略及时复习和强化理解。善思考、勤总结是复习过程中必须的,也是知识和方法不断积累的有效途径。温故而知新这一浅显的道理谁都懂,要想自己掌握,必须有一个消化的过程,而这个过程就是善思考、勤总结,定期整理归纳。

  高中数学学习方法指导

  和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。

  高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。

  (一)指导提高听课的效率是关键。

  1、课前预习能提高听课的针对性。

  预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

  2、听课过程中的科学。

  首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。

  其次就是听课要全神贯注。

  全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

  耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。

  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。

  心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。

  口到:就是在老师的指导下,主动回答问题或参加讨论。

  手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。

  若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的'印象。

  3、特别注意讲课的开头和结尾。

  讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

  4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

  此外还要特别注意老师讲课中的提示。

  老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。

  最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

  (二)指导做好复习和总结工作。

  1、做好及时的复习。

  课完课的当天,必须做好当天的复习。

  复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

  2、做好单元复习。

  学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

  3、做好单元小结。

  单元小结内容应包括以下部分。

  (1)本单元(章)的知识网络;

  (2)本章的基本思想与方法(应以典型例题形式将其表达出来);

  (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  (三)指导做一定量的练习题

  有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。

  另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。

  数学学习的误区

  误区一:课上听懂知识就掌握了

  在数学学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一回事,而达到能应用知识解决问题是另一回事。波里亚说得好:“教师在课堂上讲什么当然重要,然而学生想什么更是千百倍的重要。”

  教师所举例题是范例也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。

  对策一:自己重做一遍例题对策二:问自己:为什么这样思考问题。

  对策三:条件、结论换一下行吗?

  对策四:有其他结论吗?

  对策五:我能得到什么解题规律?

  误区二:多做题目总能遇到考试题

  有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。

  对策一:让自己花点时间整理最近解题的题型与思路。

  对策二:这道题和以前的某一题差不多吗?

  对策三:此题的知识点我是否熟悉了?

  对策四:最近有哪几题的图形相近?能否归类?

  对策五:这一题的解题思想在以前题目中也用到了,让我把它们找出来!

  误区三 钻研难题基础题就简单了

  有一个学生曾对我说:“我喜欢做难题,钻研数学难题能让我感到思维中的快乐,简单的题目没有什么意思。”应该说这位同学已经体会到了数学学习的快乐,他对数学开始有自己的理解,可是奇怪的是他的数学成绩总达不到满意的高分,考完试后他总是后悔有一些地方不细心或没注意。其实这也在一定程度上反映出我们数学学习中的浮躁状况,老师爱讲难题、综合题,学生想做综合题、难题,在忽视基础的同时,迷失了数学学习的方向。

  对策一:告诉自己数学思维不等于复杂思维,数学的美往往体现在一些小题目中。

  对策二:“简约而不简单”在平常题中体会数学思维的乐趣。

  对策三:“一滴朝露也能折射出太阳的光辉。”让我从基础题中找到综合题的影子。

  对策四:这道题真的简单吗?

  对策五:我是一名优秀的学生,我能在平凡中体现出我的优秀。

  误区四 思想有点高不可攀

  一谈到数学思想方法,有些学生会认为深不可测、高不可攀。其实每一道数学题之中都包含着数学思想方法,例如把分式方程化为整式方程就应用了转化思想,列方程解应用题体现了方程思想,平面直角坐标系中图象与解析式反映了数形结合思想,图形的翻折与旋转则表现了运动变换思想等等。数学思想方法是指导解题的十分重要的方针,有利于培养学生思维的广阔性、深刻性、灵活性和组织性。在初三数学的学习过程中,自己不妨把图形动一动、变一变,把条件和结论作一些其它方面的联想,数学化地思考问题。中考题的压轴题往往是在串联几个知识点的同时考查学生猜想与探究、函数与运动、变换与分类等能力,这在能力层面上提出了较高的要求。

  对策一:数学思想方法并不神秘,它蕴藏在题目之中。

  对策二:了解一些数学思想,找到几道典型题。

  对策三:解题完毕问自己“我运用了什么数学思想方法”?

  对策四:解题前问自己从什么角度去思考?(方程角度、运动角度、函数角度、分类讨论角度等)

  对策五:请老师介绍一些数学思想方法。

【数学学习技巧与方法有哪些】相关文章:

初中数学教学的方法与技巧有哪些10-28

初中数学的学习方法和技巧有哪些10-28

初中数学有哪些学习方法12-16

数学常用学习方法有哪些03-05

小升初数学有哪些学习方法02-01

数学的学习方法与技巧03-04

初中数学做题有哪些技巧及方法04-04

数学记忆的学习方法有哪些03-06

数学学习方法有哪些呢03-05

初中数学的学习方法有哪些02-01