高中立体几何学习方法
立体几何一直是高中数学的一大难点,在已经掌握了平面几何的基础知识后,要进一步学好立体几何的基础知识却并不容易。下面和小编具体了解下高中立体几何学习方法。
高中立体几何学习方法之建立空间观念
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的`几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。
高中立体几何学习方法之掌握基础
直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
高中立体几何学习方法之解决问题的策略
如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。
高中立体几何学习方法之重视证明过程
各类考试中都有立体几何论证的考察,论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。
高中立体几何学习方法之充分运用“转化”思想
解立体几何的问题,要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。通过转化可以使问题得以大大简化。
高中立体几何学习方法之平时注意规范训练
在平时要养成良好的答题习惯,按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
【高中立体几何学习方法】相关文章:
高中数学立体几何学习方法总结12-22
高中数学立体几何学习方法有哪些?10-28
高中数学立体几何学习方法有哪些12-21
高三立体几何学习方法12-19
数学的立体几何学习方法03-09
高中数学立体几何知识点03-31
学好高中数学立体几何的方法11-10
如何学好立体几何12-22
高中数学立体几何的知识点总结03-04