数学分类讨论学习方法

时间:2021-02-02 13:26:50 学习方法 我要投稿

数学分类讨论学习方法

  导语:分类讨论在数学题中经常出现,也是满分率比较低的一种题,同学们在做题的时候经常会犯错误,下面是数学分类讨论学习方法,欢迎参考!

数学分类讨论学习方法

  分类讨论小题经常忘记分类讨论,大题经常讨论不全,讨论全了结果还不一定对。所以,这种题很容易不小心丢分。跟老师合学生们交流之后发现,就算是学习成绩很好的同学在这种题上都会多多少少的出现问题,因此我们在考试当中一定要养成以下几个好习惯。

  首先我们要有分类讨论的'意识。很多知识点是分类讨论的常客,对于这些知识点,同学们在考试时要保持高度的敏感,时刻紧绷分类讨论的弦,以免掉进出题老师的陷阱。

  其次,分类讨论是要有一定原则,不要东一榔头西一棒子的的试,要具备一定的条理。分类的原则:

  (1)分类中的每一部分是相互独立的;

  (2)一次分类按一个标准;

  (3)分类讨论应逐级有序进行。以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点A、B,需要在X轴上找第三个点C使得这个三角形ABC是等腰直角三角形,这个时候同学们可以线段来分类讨论:AB为斜边时,AC为斜边或时BC为斜边时点C的坐标。

  这样讨论保证不会丢掉任何一种可能性,并且效率较高。当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。

  第三,在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。

《数学分类讨论学习方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【数学分类讨论学习方法】相关文章:

学数学的特点分类和学习方法03-08

英语学习方法技巧分类03-10

高中理科生的数学学习方法探讨论文03-28

关于英语讨论的学习方法03-06

小升初数学:学习方法03-11

数学高效学习方法12-27

大学数学常用学习方法09-05

大学数学的学习方法09-03

大学数学学习方法07-20

论文-AI自动生成器

万字论文 一键生成

输入题目 一键搞定毕业范文模板
AI原创 低重复率 附赠査重报告

点击生成
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

数学分类讨论学习方法

  导语:分类讨论在数学题中经常出现,也是满分率比较低的一种题,同学们在做题的时候经常会犯错误,下面是数学分类讨论学习方法,欢迎参考!

数学分类讨论学习方法

  分类讨论小题经常忘记分类讨论,大题经常讨论不全,讨论全了结果还不一定对。所以,这种题很容易不小心丢分。跟老师合学生们交流之后发现,就算是学习成绩很好的同学在这种题上都会多多少少的出现问题,因此我们在考试当中一定要养成以下几个好习惯。

  首先我们要有分类讨论的'意识。很多知识点是分类讨论的常客,对于这些知识点,同学们在考试时要保持高度的敏感,时刻紧绷分类讨论的弦,以免掉进出题老师的陷阱。

  其次,分类讨论是要有一定原则,不要东一榔头西一棒子的的试,要具备一定的条理。分类的原则:

  (1)分类中的每一部分是相互独立的;

  (2)一次分类按一个标准;

  (3)分类讨论应逐级有序进行。以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点A、B,需要在X轴上找第三个点C使得这个三角形ABC是等腰直角三角形,这个时候同学们可以线段来分类讨论:AB为斜边时,AC为斜边或时BC为斜边时点C的坐标。

  这样讨论保证不会丢掉任何一种可能性,并且效率较高。当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。

  第三,在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。