高中数学直线与方程的知识点归纳

时间:2022-10-21 16:32:55 高中数学 我要投稿
  • 相关推荐

高中数学关于直线与方程的知识点归纳

  一、直线与方程知识点

高中数学关于直线与方程的知识点归纳

  直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的性质。

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

  (2)直线的斜率

  ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  二、空间两直线的位置关系知识点

  空间两条直线只有三种位置关系。

  1、按是否共面可分为两类:

  (1)共面:平行、相交

  (2)异面:

  异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

  异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

  两异面直线所成的角:范围为(0,90)esp。空间向量法

  两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法

  2、若从有无公共点的角度看可分为两类:

  (1)有且仅有一个公共点相交直线;(2)没有公共点平行或异面

  三、直线和平面的位置关系知识点

  直线和平面只有三种位置关系。

  ①直线在平面内有无数个公共点

  ②直线和平面相交有且只有一个公共点

  直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  esp。空间向量法(找平面的法向量)

  规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角

  由此得直线和平面所成角的取值范围为[0,90]

  最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

  三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

  esp。直线和平面垂直

  直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

  直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

  直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ③直线和平面平行没有公共点

  直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

  直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

  直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

  四、解析三角函数知识点

  常见的三角函数包括正弦函数、余弦函数和正切函数。

  有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数弧度制的角。有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。

  既然三角函数作为一种函数意义的理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效就好像配方在二次函数中应用广泛是一个道理。

  三角恒等变形部分,并无太多诀窍,从教学中可以看出,学生听懂公式都不难,应用起来比较熟练的都是那些做题比较多的同学。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的统一论,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。

  五、两个平面的位置关系知识点

  两个平面的位置关系只有两种。

  两个平面的位置关系:

  (1)两个平面互相平行的定义:空间两平面没有公共点

  (2)两个平面的位置关系:

  两个平面平行—————没有公共点;两个平面相交—————有一条公共直线。

  a、平行

  两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

  两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

  b、相交

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0,180]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  esp。两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

  Attention:

  二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

  六、幂函数定义与性质知识点归纳

  形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x0,函数的定义域是(—,0)(0,+)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x0,则a可以是任意实数;

  排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

【高中数学直线与方程的知识点归纳】相关文章:

高中数学直线与平面平行直线与平面垂直知识点总结10-31

高中数学函数知识点归纳07-25

高中数学空间几何体知识点归纳07-20

高中数学关于集合间的基本关系的知识点归纳09-21

2017最新关于直线系方程学习方法11-26

中英语知识点归纳12-05

初一几何经典的知识点归纳01-03

歇后语相关知识点归纳04-19

高中数学函数知识点04-26

初中数学代数式知识点归纳03-24