数学学习计划

时间:2024-06-22 16:53:56 学习计划 我要投稿

实用的数学学习计划汇编十篇

  时光飞逝,时间在慢慢推演,我们的工作又将迎来新的进步,此时此刻我们需要开始做一个计划。我们该怎么拟定计划呢?下面是小编帮大家整理的数学学习计划10篇,欢迎大家借鉴与参考,希望对大家有所帮助。

实用的数学学习计划汇编十篇

数学学习计划 篇1

  ——良好的开始是成功的一半

  有一种普遍现象:许多初中数学学习成绩的佼佼者,进入高中后,不能适应高中的数学学习,成绩下降,笔者认为产生这一现象有两个方面的原因:一方面学生升入高中后(一般都是各县市或乡镇中学升入重点高中),发现周围都是优秀的学生,回想自己曾经是老师心中的优秀生,是同学眼中的榜样,但经过数次考试后发现优势不再,而且在其它的综合素质方面也不能崭露头角,心理出现了巨大的落差,进而消极,如果不及时调整自己的心态,容易产生自暴自弃的想法和行为,严重者还会产生精神方面的疾病,此种例子比比皆是。另一方面教学内容的加深,思维要求的提高,课堂知识容量的增加,教师讲解习题的时间减少,学生不能适应这种变化,此外初中的学习方法已不能适应高中的数学学习,教师也不再像初中那样紧盯着学生学习,更多的在于自学,针对这种现象,笔者认为有必要向高一新生讲一下如何应对高中数学学习的经验和建议。

  一 、初中与高中数学的差异

  高中数学与初中数学一个明显的差异是知识内容“量”的急剧增加,单位时间内接受知识信息的量与初中相比增加了许多,消化和练习的时间相应的减少了,另外,初中数学是以形象、通俗的语言方式进行表达,而广州数学则触及的是抽象的数学语言以及抽象的思维形式,各种抽象的概念性语言对思维能力提出更高的要求,此外高中数学更加强调分析过程、思想方法的贯穿及运用、思维形式的训练及能力素质的培养。

  二 、学生存在的不良学习习惯

  ⑴思想上的松懈

  有些同学把初中的那一套学习思想移植到高中来,简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!

  ⑵靠记忆学习数学

  初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。

  ⑶依赖教师,忽视自学习惯

  许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。

  ⑷在头脑中没有形成数学知识体系,只注重孤立的知识点

  高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。

  ⑸只注重结论与记忆,不注重知识的形成过程

  高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。

  ⑹没有形成自我反思、自我总结的习惯

  学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。

  三、掌握科学的数学学习方法是学好数学的关键

  高中生仅仅想学时不够的,必须掌握科学的学习方法,才能提高学习效率,才能做学习的主人。但学无定法,每个学生都有自身的优缺点,学生应根据自己的特点及学习情况,对各种学习方法比较和积累,最终形成自己的学习方法,以下是一些共性的学习方法作简单介绍。

  (一)养成课前预习的习惯

  ⒈预习的意义

  预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。

  2.预习的基本步骤

  边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的'运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。

  边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。

  边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。

  (二)专心听讲,积极提出自己的问题,认真做好笔记

  “学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。

  新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。

  (三)认真完成作业,做好复习总结

  认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。

  及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。

  (四)关注错题

  有一种简单化的认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.

  知识性错误

  主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.

  逻辑性错误

  逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.

  知识性错误与逻辑性错误既有联系又有区别.

  (1)知识性错误与逻辑性错误有联系.

  由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.

  (2)知识性错误与逻辑性错误又有区别.

  知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.

  策略性错误

  这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.

  例如:不等式x2+ax+1>0在x[1,2]上恒成立,求实数a的取值范围,大多数同学

  都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.

  心理性错误

  这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:

  (1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.

  (2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.

  (五)主动学习,善于对比和联想

  在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。

  学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。

  学习数学一定要在三个字上下功夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。

  对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。

数学学习计划 篇2

  一、复习目的

  1、使学生进一步理解和掌握所学知识,使之更加系统和完善。

  2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题。

  3、使学生打好数学基础,提高学习能力,培养学习习惯,做好中小衔接准备。

  二、复习原则

  1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。

  2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。

  3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教

  学方法,查漏补缺,集中答疑,提高复习效果。

  三、复习方法

  带领学生按单元整理复习,巩固基础知识。

  教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。

  2、加强计算能力的训练

  平时教学中发现学生的'计算能力普遍较低,特别是六(4)班,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。

  3、加强与实际的联系

  适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。

  4、讲练结合

  有讲有练,在练中发现问题。

  5、分层指导

  针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。

  四、具体安排

  第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)

  1、分数乘、除法及其四则混合运算

  2、稍复杂的分数应用题

  3、百分数及应用题

  4、圆的周长和面积

  第二阶段:综合练习,讲练结合(综合试卷)

  给学生一些综合性的测试卷,通过练习发现问题,并及时进行指导。

  第三阶段:分层复习,查漏补缺

  给后进生特别的辅导和指导,查漏补缺。给优等生多做一些实践性较强的习题,提高分析解答能力。

数学学习计划 篇3

  暑期是查漏补缺的黄金时期,也是想在学习上逆袭的最佳时间。特别是对于高二升高三的我,更应该很好的利用这个暑假,为高三的紧张复习状态做好充分的准备。为了让我高效利用这个暑假,下面总结了高二升高三的暑期数学学习计划。

  一、把高二知识巩固好

  从知识角度来看,高二的解析几何、数列是高考的重中之重(另一重点内容是函数与导数),高考题经常有解析与数列的综合题。因为刚学过,多数知识点还熟悉,要在此基础上提高到(或接近)高考要求,相对来说比较容易。有些学校在高三第一学期就开始做综合试卷,如果能掌握好高二知识,会做得更好,这对以后的学习有促进作用,能帮助我形成良性循环。

  二、注重归纳总结

  平时在校由于作业多,无暇静下来做些归纳总结工作,而这对能力的提高会有很大的帮助。总结可以按章节,也可以按知识点。比如对圆锥曲线一章可按如下进行:

  1.基本概念:曲线和方程定义及应用、圆锥曲线的定义及标准方程、直线和圆锥曲线的位置关系等。

  2.基本题型的常见解法、特殊解法,如求两圆相交弦所在直线的方程,若求交点,不仅计算繁而且还会出现运算错误,用曲线系方程则很简单。

  3.易错问题剖析。

  4.本章涉及哪些数学思想方法。对思想方法的归纳要通过具体例子来实现,比如中点弦问题,涉及弦长,则用韦达定理,不涉及弦长,则用点差法。

  三、弥补薄弱环节

  在某章节学得不太好,可以集中时间补一下。首先要理解基本概念,记住公式和定理,千万不要一边看公式一边做题目,这样效果不好,要通过做题记住公式。其次要做熟常见的题型,并掌握其变式,要注意解题方法的总结,做题不要追求多,而要追求解题质量,提高效率。第三要特别重视定义的运用,还有努力把会做的题做对,我丢分相当严重,平时都认为是粗心,其实不尽如此,是多方面原因造成的,应及早找出原因,尽快改正。

  四、腾出时间挑战新题

  我做题只是做一些老师讲过或是会做的题目,这类题目多是巩固性的,反复操练没有太大必要。要能腾出时间去做一些相对比较新的题目,这些题不一定难,但是以前自己没见过的问题,可以多花些时间从各个不同的角度去思考,这里不仅关心结果,更关注过程,这样的心理体验是必须经历的`,它有助于高三阶段综合能力的提高。

  五、做些开发思维的题目

  学校在放假前就发了高三的复习用书,要求学生在暑假做甚至要求做完。对重点中学中等以上水平的同学不会有太大困难,但对中等水平以下和普通中学的多数同学会有不同程度的困难。对此要根据自己的具体情况而定,实在做不出也不要勉强,那毕竟是高三第一轮的学习任务。有些同学做了,但上课时又认为自己会做了,不认真听课,最终效果不好。有些基础好的同学由于超前学习太多,以至于早早就进入状态,到高考时不一定处在最佳状态,这部分同学要注意调节学习节奏。暑假可做些思维容量大的开发性问题,它最终会使你的能力得到提高,对你以后无论做什么类型的题都会有帮助。

数学学习计划 篇4

  紧张而又充实的教学工作已经结束,下段时间我们就要进入期末的总复习阶段,为了更好的、更圆满地完成这学期的教学工作,特制定以下复习计划:

  一、学情分析:

  我任教的是二(1)(2) 班,这两个班共有学生120人。两个班级在数学学习上主要存在以下问题:

  (1)部分学生的口算速度比较慢,计算的正确率不高;

  (2)不能正确运用所学数学知识解决生活中简单的实际问题;

  (3)学习两极分化比较严重,部分孩子的基础知识不错,但遇到分析问题的题就一头雾水

  (4)学习的积极性也不高,学生独立审题的能力还有待加强训练、

  二、复习内容:

  本册我们主要学习了数据的.收集与整理、表内除法(1)(2)、图形的运动、混合运算、有余数的除法、万以内数的认识、克和千克、数学广角——推理9部分的内容。

  三、复习方式

  1、分块复习(夺冠新课堂)为主。对整块知识进行复习之后,结合习题进行巩固。

  2、综合练习(试卷)。以测验或作业的形式让学生练习,在课堂上教师精讲。

  3、查缺补漏。对于在复习中学生反映出的问题加以补充练习。

  四、复习重难点

  重点:

  表内除法(1)(2)、混合运算、有余数的除法、万以内数的认识

  难点:

  数据的收集与整理、图形的运动、克和千克、数学广角——推理9

  五、复习措施:

  1、向课堂要质量,在复习过程中查漏补缺,抓学生的薄弱环节。

  2、采用‘一帮一“互助活动,成立学生互助小组,让小组之间互相交流。小组与小组之间互相评比,培养优生,鼓励后进生。

  3、认真落实作业辅导这一环节,及时做好作业情况记载。并对问题学生及时提醒,限时改正。

  4、复习时少讲精讲,让学生多练,在练习中发现问题,解决问题。

  5、重点指导学困生,缩小他们与优生的差距。

  6、复习时有张有弛,使学生在愉快的氛围中快乐学习,快乐成长。

  六.复习课时安排

  1、数据整理 1课时

  2、表内除法 5课时

  3、图形的运动 2课时

  4、混合运算 3课时

  5、有余数的除法3课时

  6、万以内数的认识 4课时

  7、克和千克 2课时

  8、数学广角——推理 1课时

数学学习计划 篇5

  一、研修主题

  为了实施素质教育、面向全体学生,就必须做好学困生的转化工作。在学困生的转化工作中,班主任及科任老师除了倾注爱心,发现闪光点,因材施教,抓好反复教育外,还要注重学困生非智力因素与智力因素的的培养。为此,本次我选择了《农村小学数学学困生的转化》为研修主题。

  二、研修目标

  为了充分发挥每一个学生的特长,不让一个学生掉队,尤其是充分调动学困生的积极性让他们从学习边缘地带能真正回归于课堂。通过转化,本班学困生能基本掌握学习的方法,能树立学习态度,对于掌握基本技能起到推动作用。引导学生,树立学生要学、肯学、苦学的思想,努力彻底地改变自己,实现自我价值。使本班学困生转化率达到90%。

  三、学习内容

  《新课程标准》小学数学,《教师转化学困生的有效策略》,《小生学困生的转化,新课程教师》。

  四、研修过程

  1、摸清本班学困生的基本信息、分析学困生其形成的原因,并且对每一个学困生制定切实可行的帮扶计划,建立学困生个人转化成长记录资料。2、具体实施帮扶转化措施:

  1、课堂上有意识给学困生制造机会,让优生吃得饱,让学困生生吃得好。

  2、课外组织学困生加以辅导训练。

  3、发挥优生的优势,指名让他带一名学困生,介绍方法让学困生懂得怎样学,激起他们的`学习兴趣。

  4、对于学困生主要引导他们多学习,多重复,在熟练的基础上不断提高自己的能力,尤其是学习态度的转变和学习积极性的提高方面要花大力气。

  5、积极发掘学困生身上的闪光点,做到多表扬少批评、多尊重不歧视、多鼓励不嘲笑,树立起学习的信心。在生活上、思想上关心他们。

  6、进行家访,与家长取得联系,制定共同的教育促进转化目标。

  3、完成相应帮扶转化的教育教学反思,即“我讲我的教育故事”和“我做我的教学设计”

  五、预期研修成果

  通过本次校本研修,使自己的教育教学水平能得到进一步的提高,能撰写出高质量“小学数学学困生的转化”的教育叙事及“小学数学空间与图形教学生活化”的一节教学设计。

数学学习计划 篇6

  高一升高二数学学习方法和计划

  和高一数学相比,高二数学的内容更多,抽象性、理论性更强,因此不少同学进入高二之后很不适应。代数里首先遇到的是理论性很强的曲线方程,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些高一数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高二数学谈几点意见和建议。

  培养浓厚的兴趣:

  高中数学的学习其实不会很难,关键是你是否愿意去尝试.当你敢于猜想,说明你拥有数学的思维能力;而当你能验证猜想,则说明你已具备了学习数学的天赋!认真地学好高二数学,你能领悟到的还有:怎么用最少的材料做满足要求的物件;如何配置资源并投入生产才能获得最多利润;优美的曲线为什么可以和代数方程建立起关系;为什么出车祸比体育中奖容易得多;为什么一个年段的各个班级常常出现生日相同的同学??

  当你陷入数学魅力的"圈套"后,你已经开始走上学好数学的第一步!

  培养分析,推断能力:

  其实,数学不是知识性,经验性的学科,而是思维性的学科,高中数学就充分体现了这一特点.所以,数学的学习重在培养观察,分析和推断能力,开发学习者的创造能力和创新思维.因此,在学习数学的过程中,要有意识地培养这些能力.

  关于学习方法和效果的关系,可以这样描述:当你愿意去看懂大部分题目的答案时,你的考试成绩应该可以轻松及格;当你热衷于研究各种题型,定期做出小结的时候,你一定是班级数学方面的优等生;而当你习惯根据数学定义自己出题,并解决它,你的数学水平已经可以和你的老师并驾齐驱了!

  学习程度不同的学生需要不同的学习方法:

  如果你正因为数学的学习状态低迷而苦恼,请按如下要求去做:预习后,带着问题走进课堂,能让你的学习事半功倍;想要做出完美的作业是无知的,出错并认真订正才更合理;老师要求的练习并不是"题海",请认真完成,少动笔而能学好数学的天才即使有,也不是你;考试时,正确率和做题的速度一样重要,但是合理地放弃某些题目的想法能帮助你发挥正常水平.

  如果你正因为数学的学习成绩进步缓慢而郁闷,请接受如下建议:收集你自己做过的错题,订正并写清错误的原因,这些材料是属于你个人的财富;对于考试成绩,给自己定一个能接受的底线,定一个力所能及的奋斗目标;合理的作息时间和良好的学习习惯将有助你获得稳定的学习成绩,所以,请制定好学习计划并努力坚持;把很多时间投入到一个科目中去,不如把学习精力合理分配给各个学科.人对于某一知识领域的学习常出现"高原现象",就是说当达到一定程度,再努力时,进步开始不明显.

  下列学习方法比较经典:

  一、提高听课的效率是关键。

  1.课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。

  2、特别注意讲课的开头和结尾。讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。另外,老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。

  3、最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

  二、做好复习和总结工作。

  1、做好及时的复习。课完课的`当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

  2、做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

  三、指导做一定量的练习题

  有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。

数学学习计划 篇7

  数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

  1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

  2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

  3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的.题型,训练要做到有的放矢。

  4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学学习计划 篇8

  一、第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2、了解函数的有界性、单调性、周期性和奇偶性。

  3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6、掌握极限的性质及四则运算法则。

  7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  二、第二阶段复习计划:

  复习高数书上册第二章1—3节,需达到以下目标:

  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的`几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3、了解高阶导数的概念,会求简单函数的高阶导数。

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  三、第三阶段复习计划:

  复习高数书上册第二章 4—5节,第三章1—5节。需达到以下目标:

  1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3、掌握用洛必达法则求未定式极限的方法。

  4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  四、第四阶段复习计划

  复习高数书上册第四章 第1—3节。需达到以下目标:

  1、理解原函数的概念,理解不定积分的概念。

  2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  五、第五阶段复习计划

  复习高数书上册第五章第1—3节。达到以下目标:

  1、理解定积分的几何意义。

  2、掌握定积分的性质及定积分中值定理。

  3、掌握定积分换元积分法与定积分广义换元法。

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  六、第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。

  2、掌握定积分换元法与定积分广义换元法。 会求分段函数的定积分。

  3、掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

数学学习计划 篇9

  教学内容:

  圆柱和圆锥、统计初步知识、比和比例、总复习

  教学要求:

  (一)授内容的教学要求

  1、知识要求:

  (1)认识圆柱和圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。

  (2) 填写统计表,会制作比较简单或局部的统计表,会依据统计表进行初步的分析,提出一些问题;会制作比较简单或局部的统计图,会依据条形统计图、折线统计图,回答或提出一些问题。

  (3)理解比的比的意义和性质,会求比值和化简比;理解比例的意义和性质,会解比例;理解正比例和反比例的意义,会正确判断两种相关联的量是否成正比例或反比例,会根据正比例或反比例的意义解答简单的应用题。

  2、能力要求:

  进一步培养学生的计算能力、发展学生空间观念和思维能力,提高解决简单实际问题的能力。

  3、德育要求:

  让学生进一步受到辩证唯物主义的启蒙教育和国情教育,进一步培养学生健康情感、良好的意志品质和学习习惯。

  通过实践活动,使学生初步了解数学与社会的联系,进一步感受数学的作用。

  (二)总复习单元的教学要求

  通过系统的整理和复习,使学生巩固和加深理解小学阶段所学的'数学知识。正确、灵活地进行计算,会依据题目的具体情况选择简便的解答方法,会运用所学的数学知识解决一些简单的实际问题。为学生升入初中,顺利的完成九年义务教育阶段的数学学科的学习任务,奠定良好的基础。

  课时安排

  一、圆柱和圆锥…………………………………………………共9课时

  1、圆柱的认识和表面积…………………………………………3课时

  2、圆柱的体积……………………………………………………2课时

  3、圆锥的体积……………………………………………………2课时

  4、复习……………………………………………………………2课时

  二、统计初步知识……………………………………………共11课时

  1、统计表…………………………………………………………3课时

  2、统计图…………………………………………………………6课时

  3、复习……………………………………………………………2课时

  三、比和比例…………………………………………………共20课时

  1、比的意义和性质………………………………………………2课时

  2、按比分配………………………………………………………2课时

  3、比例的意义和性质……………………………………………3课时

  4、比例尺…………………………………………………………2课时

  5、正比例…………………………………………………………3课时

  6、反比例…………………………………………………………3课时

  7、应用题…………………………………………………………3课时

  8、复习……………………………………………………………2课时

  四、总复习……………………………………………………共30课时

  进度按排:

  20xx年2月16日---2月20日 圆柱的认识和表面积

  20xx年2月23日---2月27日 圆柱的体积、圆锥的认识和体积

  20xx年3月1日---3月5日 第一单元复习考试、统计表

  20xx年3月8日---3月12日 条形统计图、折线统计图

  20xx年3月15日---3月19日 第二单元复习考试

  20xx年3月22日---3月26日 比的意义和性质、按比分配

  20xx年3月29日---4月2日 比的意义和性质、比例尺

  20xx年4月5日---4月9日 正比例、反比例

  20xx年4月12日---4月16日 反比例、应用题

  20xx年4月19日---4月23日 复习、第三单元测验

  20xx年4月26日---4月30日 复习整数和小数、数的整除

  20xx年5月10日---5月14日 数的整除、分数和百分数

  20xx年5月17日---5月21日 分数和百分数、量与计量

  20xx年5月24日---5月28日 代数的初步知识、几何的初步知识

  20xx年5月31日---6月5日 统计的初步知识、比和比例

  20xx年6月7日---6月11日 毕业考试

数学学习计划 篇10

  (一)制定合理学习计划,及时检查落实。

  1.制定符合自己的实际情况的学习计划。

  2、要有明确的学习目标。

  通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。

  3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。

  4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。

  5、措施落实要有力。可附带制定计划落实情况的'自我检查表,以便监督自己如期完成学 习目标。

  (二)做好课前预习,提高听课效率。

  通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。

  1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。

  2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

【数学学习计划】相关文章:

数学的学习计划11-10

关于数学的学习计划11-08

初中数学的学习计划03-19

数学学习计划09-12

【经典】数学学习计划10-24

暑假数学的学习计划11-29

数学复习学习计划05-21

初中数学学习计划02-17

小学数学学习计划02-17

数学小学学习计划04-02