数学的由来简介

时间:2022-02-15 12:19:54 中考素材 我要投稿

数学的由来简介

  数学的产生和发展始终围绕着数和形这两个基本概念不断地深化和演变。以下是小编收集整理了数学的由来简介,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学的由来简介

  数学的来源

  古希腊人在数学中引进了名称、概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅仅是匆匆记下些许信息,但他们几乎争先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。在现存的资料中,希罗多德(Herodotus,公元前484——425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说,希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。然而,认为普通几何学有一个辉煌开端的推测是肤浅的。

  柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说,故事发生在古埃及的洛克拉丁区域,在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数、计算、几何学和天文学,还有棋类游戏等。

  柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正确。亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自身发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司,他们有空闲时间,自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点。

  就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。

  “数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”,“可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre,也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。

  “数学”一词从表示一般的知识,到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专门化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专门化在柏拉图时代就完成了。而不知是什么原因,辞典编辑或涉及名词专门化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专门化确实受到人们的注意。

  家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。

  首先,亚里士多德提出,“数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640至546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里德的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500——?年)有一段名言:“万物都在运动中,物无常往”,“人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。

  对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的.希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。

  这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214——1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596——1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。

  在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里德的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。

  数学的由来

  数学的历史开始于结绳记事。大约在300万年前,处于原始社会的人类用在绳子上打结的方式来表示事和数,并以绳结的大小来表示野兽的大小,数的概念就这样逐渐发展起来。在距今约五六千年前,古埃及人较早地学会了农业生产。当时,尼罗河每年会定期泛滥,淹没耕地,埃及国王便派人丈量每户损失的土地,以相应减免他们的地租。这种对于土地的测量,最终催生了几何学。数学就是从“结绳记事”和“土地测量”开始的。约两千年前,古希腊人继承和发展了这些数学知识,并将数学发展为一门学科。

  为何古代称“数学”为“算术”?

  在我国古代,“算”指一种竹制的计算器具,“算术”是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。“算术”一词正式出现于《九章算术》中。在隋唐时代,国家成立了培养天文家和数学家的专门机构一“算学”,它相当于现在大学里的数学系,教学用中国古代数学家祖冲之书有《孙子算法》《五曹算经》《九章算术》等算术书。从19世纪起,西方的一些数学学科,包括代数、几何、微积分、概率论等相继传入我国,西方传教士多使用“数学”,中国古算术则仍沿用“算学”。1935年,中国数学会确立了“算术”的意义,而算学与数学仍并存使用。直至1939年,清华大学才把“算学系”改为“数学系”。

  为何日常计数要用十进位制?

  我们从0数到10,再往下数就是11,12,13……21,22……这种数完10个数便往前进一位的计数方法,就是十进位制。在生产力十分低下的远古时代,古人要数清猎物,十指自然地成为了最早的“计算器”。而当猎物数量增多后,仅用10个手指已数不过来,人们便加了一些辅助工具。比如,10个手指数完了,便在地上搁块石头,再重新使用手指。经过多次的反复计算和总结经验,人类就发明了十进位制,并将其广泛应用到社会生活中的各个方面。因为十进位制简便易行,到20世纪初,世界上大多数国家都将十进位制作为标准度量衡单位。

  阿拉伯数字的由来

  公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是阿拉伯数字的老祖先了。

  为什么阿拉伯数字能通行世界?

  我们平常所用的0、1、2、3、4、5、6、7、8、9这10个数字叫阿拉伯数字,它在世界各地都是通用的。实际上,阿拉伯数字是印度人在大约1500年前发明的。后来,在亚洲经商的阿拉伯人学会了这些数字,并将它们带到了欧洲,欧洲人便称之为阿拉伯数字。阿拉伯数字书写起来既节省时间,又节省空间,计算起来也非常方便,深受欧洲人欢迎,使用非常广泛。此外,从公元7世纪开始,阿拉伯人便向外扩张势力,阿拉伯数字也随之传播开来,最后成为世界上通用的数字写法。现在,阿拉伯数字已成为人们学习、生活和交往中最常用的数字。

【数学的由来简介】相关文章:

4月23日世界读书日的由来「简介」05-03

中考数学题型简介12-18

大学数学线性代数知识简介09-05

吃醋的由来05-05

关于除夕的由来10-30

剪纸艺术的由来11-13

蔚县剪纸的由来09-22

剪窗花的由来10-31

现代军礼的由来05-19

舞龙、舞狮的由来08-26